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SHORT COMMUNICATIONS

The refraction correction for lattice constants calculated from powder or rotation crystal
patterns. By M. E. Stravmants, University of Missouri School of Mines and Metallurgy, Department of Metal-

lurgy, Rolla, Missouri, U.S.A.

(Received 6 June 1955)

It was recommended some years ago not to apply the
refraction correction in the case of precision determina-
tion of lattice parameters from powder and rotation
crystal photographs (Barrett, 1952). In the meantime
some publications have appeared which have followed
this recommendation, but in other cases the refraction
correction has still been applied. The object of this com-
munication is to point out when the refraction correction
is necessary and when not.

Darwin (1914), and later Ewald (1918, 1920, 1924,
1925), developed a theory of X-ray diffraction from which
it followed that the Bragg equation is correct only inside
a crystal. This conclusion was later used by Stenstréom
in order to determine the exact wavelength of X-rays
in vacuum (or air). The equation used by him was (Sieg-
bahn, 1931)

nA’ = 2dsin 6, (1)

where 4’ is the wavelength and 6" the reflection angle,
both within the crystal.

7’ could be calculated from 4, the wavelength in air or
vacuum, using the index of refraction u:

Vo= u; (2)

the angle 6’ follows from the observed Bragg angle 6,
using Snell’s law:

cos 6’ = cos O/u . (3)

Eliminating 2’ and cos 6’ from (1), and using (2) and (3),
one obtains: .
nd = 2d(1—4§/sin? 0) sin 0, (4)

where § = 1—u. According to Siegbahn, (4) is identical
with the equation derived by Ewald from his dynamical
theory. The observed angle 6 is larger than §’, for which
the Bragg equation is correct, and the d values calculated
with 6 will be slightly smaller than the actual ones.
The refraction correction, to be added to the lattice

constant a of a cubic substance, is then, according to
Ewald (see Lindh, 1930; Jette & Foote, 1935),

a = a,(1+3d/sin? 6,) , (5)

which can be derived directly from (4), and where a, is
the lattice constant as calculated from the nth inter-
ference. For more convenient application (calculation of
& from the dispersion theory), (5) is easily transformed:

5-4a’%p

a=an(]+nTz:-};§ X10—6> N (6)

@ being the density of the material under investigation,
and n?Xh? the sum of the squares of the indices (X-ray).
Equations (5) and (6) are strictly correct only in the
case of reflection from a (large or small) surface of a
single cubic crystal (Fig. 1, beam I). However, the path
of the X-rays penetrating through single crystals is dif-
ferent, as reflection from the inside occurs without any
deviation from Bragg’s law (Fig. 1, beam II). This phe-
nomenon was already known to the X-ray spectroscopists
(cf. Meyer, 1934), and is explained by the fact that the
beam II, bent away from normal Nyy produces 6’,
(equation (8)), which is now larger than 6 by the amount

0—9 = A, = (1—p) tan 0,

and that this is exactly compensated by the effect of
change in wavelength inside the erystal (equation (2)):

0'—6 = A; = —(1—p) tan 6 .

Thus the final result is that 4,443 = 0, i.e. the X-ray
beam II, passing under the angle 6’ through the crystal,
is reflected according to Bragg’s law (Fig. 1).

No strong reflection will occur simultaneously from the
surface of the crystal (beam I): because of refraction
(normal Ni) and change in A, the angle is now smaller
than the internal Bragg angle 6. Hence the crystal has
to be turned from position II to I by the angle 6—6" to
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Fig. 1. Reflection of X-rays from the surface (beam I) and from the inside (beam II)
of a cubic crystal. § and @’ are the observed and actual angles of reflection.
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Table 1. Lattice constants determined with Cu K and Cr K radiations, and the refraction correction, at 25-04-0-05° C.
All values in kX.

Not corrected

Corrected for refraction

Compound acr acu acr—acu acr acy agr—acy
LiF 4-01799 4-01805 —0-00006 4-01807 4-01808 —0-00001
NaF 4-62335 4-62341 —0-00006 4-62344 4-62345 —0-00001
As, 04 11-05184 11-05194 —0-00010 11-05214 11-05208 <+ 0-00006

produce a strong reflection beam from the surface.* As
shown in Fig. 1, the total increase in angle is then
2(0—06"), which has to be subtracted from the observed
26 in order to get the actual angle of reflection 0.

Because the intensity of beam II coming from the
inside of the crystal is low owing to absorption, the
intensest part of a powder line will be produced by those
of the reflected X-ray beams which come from the surface
of a rotating single crystal or from the surfaces of the
crystal fragments (powder). This intensity will dominate
the more, the stronger the absorption of the X-rays by
the grains. Therefore, if in measuring the location of a
powder or single-crystal line on a film the point of
maximum density of the line on the equator of the pattern
is determined, a refraction correction according to (5) or
(6) has to be added to the calculated lattice parameter,
as already pointed out previously (Straumanis, 1940,
1949, 1953).

Although brittle cubic crystals frequently disintegrate
to small cubes during crushing (for instance the surface
of pulverized potassium chloride is composed to the
extent of 809% of (100) faces (Young, 1954)) there still
will be plenty of grains of irregular shape in a powder
sample. Besides, the X-ray beam impinges upon the
grains at any angle (Fig. 1 shows the simplest position).
This complicated situation was analysed by Wilson
(1940) with the result that a correction has also to be
added to the extrapolated (or calculated) lattice constant.
According to Klug & Alexander (1954), the correction
derived by Wilson is

Gcorr. = Qobs. (1+6) . (7)

It can be easily seen that (7) is also obtained from (5)
if the angle approaches {z. Thus, (7) contains both kinds
of correction, that due to the change in wavelength
(equation (2)) and that due to refraction (equation (3)),
but is strictly correct only for adding to lattice constants
obtained by extrapolation to 90°, or calculated from
high back-reflection angles. In the latter case, (7) natu-
rally gives slightly smaller corrections than (5) or (6),
but the difference can be disregarded. However, if con-
stants are calculated from interferences under 6 angles
less than 80°, (5) or (6) should be used rather than (7).
Anyway, the article of Wilson gives further evidence for
the applicability of the equations (5) or (6) of Ewald for
correction of lattice parameters calculated from powder
and rotation crystal patterns.

As these refraction corrections are small, varying from
approximately 0-00002 and less to 0-0002 A (see also
Frohnmeyer & Glocker, 1951, 1953), depending on the
variables as given by (6), the application of the correction

* As §—0’ increases with decreasing 6, the reflections on
Weissenberg photographs should appear more elongated at
low angles than at high, a phenomenon which can frequently
be observed.

gives sense only in the case of precision determinations.
For such determinations both temperature control of the
sample and reproducibility of measurements within a
range smaller than or equal to the value as given by the
calculated refraction correction, is required. In all other
cases, or for purposes of comparison applying the same
wavelength (Thewlis, 1955), the refraction correction can
be omitted.

There is also some experimental evidence for the
necessity of applying the refraction correction when
calculating the constants from precision powder patterns.

All researchers who have used X-radiations of various
wavelengths for measurements of lattice constants have
felt that some correction is necessary to balance out the
results obtained. As there were no other plausible reasons
for deviations in the constants when using various wave-
lengths, equation (5) or (6) or a similar one was applied
(Jette & Foote, 1935). The writer’s previous measure-
ments made with temperature-controlled samples also
showed a decrease of the differences in lattice constants
after the application of the correction (Straumanis,
TIevin§ & Karlsons, 1939, Table 1).

Finally, the X-ray-density atomic-weight determina-
tions support the application of the same correction, for
otherwise the weights would be too low when compared
with those determined chemically (Straumanis, 1949,
1953). For instance, for the atomic weight of carbon as
diamond, applying the above correction, 12-0096 was
obtained (Straumanis & Aka, 1951). Disregarding the
correction a value of only 12-0012 is obtained, which is
too low as compared with the chemical weight 12-011.
The refraction correction was also applied by the Hut-
chisons (1942, 1945) in determining the atomic weight
of calcium and fluorine. Although they used data obtained
with different X-radiations, and by various investigators,
the calculated weights for each element, as computed
from various combinations, agreed very well among
themselves and with the chemical weights. The same was
recently found in calculating the atomic weight of lithium
(Hutchison, 1954). All these excellent results would not
have been attained if the refraction correction were dis-
regarded.

The precision lattice-parameter measurements of the
writer and his associates, except the measurements of
the years 1935, were all corrected for refraction using
equation (6).

I wish to thank Prof. P. P. Ewald, Polytechnic Institute
of Brooklyn, and Dr B. E. Warren, Massachusetts In-
stitute of Technology, for helpful discussion.
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Oblique projections. By P.J. Brack,* Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Recetved 21 February 1955 and in revised form 1 June 1955)

The labour of investigating a three-dimensional structural
pattern is usually reduced by the use of two-dimensional
projections. Two such projections may be required to
determine all the parameters of a structure, but in some
systems (e.g. the cubic) a single projection will suffice.
Calculations in three dimensions are sometimes necessary,
even when the resulting increase in accuracy is not
essential, in order to resolve atoms that overlap in the
projections. )

A unit cell is generally chosen to have a conventional
relationship to the symmetry elements of a structure,
and projections are usually made parallel to the sides of
the cell. This is not a necessary restriction, and one can
construct a projection parallel to any direction which
joins two lattice points, i.e. parallel to any direction with
rational zone indices. The term ‘oblique projection’ will
be used to denote a projection parallel to a direction which
is not the edge of a conventional unit cell.

In Fig. 1(a) is shown a projection, parallel to the two-
fold axis, of two pairs of atoms in a structure of space
group P2. A new cell may be chosen as in Fig. 1(b), and
projection parallel to the axis b’ gives the pattern of
Fig. 1(c). Whereas Fig. 1(z) has the plane group sym-
metry P2, Fig. 1(c) belongs to P1. Each type of atom
appears twice in the projection, and from the four co-
ordinates of this pair, all three independent atomic co-
ordinates can be obtained. It is clear that in Fig. 1(b)
other directions could have been chosen for the new
direction of projection, for example, the diagonal of the
A face or the body diagonal.

Similar results can be derived for the other monoclinic
space groups (see Black, 1955). The monoclinic cell is
effectively replaced by a triclinic cell, which will have a
centre of symmetry if the monoclinic space group has one.
For example, in P2/m the four symmetry-related atoms
(in general positions) would project parallel to an oblique
axis to give two independent peaks, since the centre of

* Royal Society Mr and Mrs John Jaffe Donation Student.

symmetry is preserved in the projection. For a non-
primitive (monoclinic) lattice, the new axis can be chosen
to define either a primitive or a centred triclinic cell.
The discussion can easily be extended to space groups
of higher symmetry. Four atoms related by symmetry in

. an orthorhombic space group may give either two or four

independent positions in an oblique projection. Conven-
tional projections which are normal (e.g. in tetragonal or
hexagonal) or oblique (e.g. to the triad in a cubic) to
symmetry axes give independent peaks for symmetry-
related atoms. Oblique projections may still be useful to
resolve particular atoms which superpose accidentally in
axial projections.

The discussion leads to two main conclusions which
may be of use in refining structures by Fourier methods.
The first is that in all space groups, except Pl and P1,
it is possible in principle to obtain all atom parameters
from a single two-dimensional projection. The three-
dimensional parameters will be obtained from linear
combination of pairs of parameters measured in the
projection (Fig. 1), so that the standard errors in them
will be of the order of )2 times the normal standard
error. In some cases, more than one value of each para-
meter is obtained because there may be more than two
related atoms in the asymmetric unit; then the standard
error will be reduced. Where it can be applied, the method
should be more accurate and less laborious than the use
of higher-layer syntheses (Cochran & Dyer, 1952).

The second conclusion is that, in a complex structure,
several possible projections can be considered for refine-
ment, and it may be possible to resolve all atomic peaks
clearly by using a few selected projections and so avoid
the necessity for three-dimensional refinement. Each
projection requires data for only one zone which can be
collected on zero-layer oscillation or Weissenberg photo-
graphs, so avoiding the uncertainties introduced by
distortion of spot shapes and inter-layer correlation fac-
tors. Even in three-dimensional work, one might (for
example) choose an oblique direction for a bounded pro-



