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I t  was recommended some years ago not to app ly  the  
refract ion correction in the  case of precision determina-  
t ion  of la t t ice parameters  from powder and  ro ta t ion  
crys ta l  photographs  (Barret t ,  1952). I n  the meant ime  
some publicat ions have  appeared which have  followed 
this  recommendat ion,  bu t  in other cases the refract ion 
correction has  still been applied. The object of this  com- 
munica t ion  is to point  out  when the refract ion correction 
is necessary and  when not.  

Darwin  (1914), and  la ter  Ewald  (1918, 1920, 1924, 
1925), developed a theory  of X- r ay  diffraction from which 
i t  followed t h a t  the  Bragg equat ion  is correct only inside 
a crystal .  This conclusion was later  used b y  StenstrSm 
in order to determine the  exact  wavelength  of X-rays  
in vacuum (or air). The equat ion used by  him was (Sieg- 
balm, 1931) 

n~' = 2d sin 0 ' ,  (1) 

where ~t' is the  wavelength  and  0' the reflection angle, 
bo th  wi th in  the  crystal .  

~' could be calculated from 2, the wavelength  in air or 
vacuum,  using the  index of refract ion ;u: 

~., = ~ / ~ ;  

constant  a of a cubic substance,  is then,  according to  
Ewald  (see Lindh,  1930; J e t t e  & Foote,  1935), 

a = an(1 +~/s in  2 On) , (5) 

which can be derived direct ly from (4), and  where an is 
the  lat t ice constant  as calculated from the n t h  inter-  
ference. For  more convenient  appl icat ion (calculation of 

from the dispersion theory),  (5) is easily t ransformed:  

a = a n  l+n--~h~xh~ x l 0  -~ , (6) 

0 being the dens i ty  of the mater ia l  under  invest igat ion,  
and  n~Xh? • the  sum of the squares of the  indices (X-ray).  

Equat ions  (5) and (6) are s t r ic t ly  correct only in the  
case of reflection from a (large or small) surface of a 
single cubic crystal  (Fig. 1, beam I). However ,  the  p a t h  
of the X-rays  pene t ra t ing  th rough  single crystals  is dif- 
ferent,  as reflection from the inside occurs wi thou t  a n y  
deviat ion from Bragg's  law (Fig. 1, beam l-I). This phe- 
nomenon was a l ready known to the  X - r a y  spectroscopists 
(cf. Meyer, 1934), and  is explained b y  the  fact  t h a t  the  
beam II ,  bent  away  from normal  -NII produces 0', 

(2) (equation (3)), which is now larger t h a n  0 b y  the  a m o u n t  

0'--0 -- Ar = (1--/~) t an  0 ,  

and  t ha t  this  is exact ly  compensated b y  the  effect of 
change in wavelength  inside the  crystal  (equation (2)): 

0"--0 = A~ = --(1--/~) t an  0 .  

Thus the final result  is t h a t  Ar+A;~ = 0, i.e. the  X - r a y  
beam II ,  passing under  the angle 0' t h rough  the  crystal ,  
is reflected according to Bragg 's  law (Fig. 1). 

No strong reflection will occur s imul taneously  from the  
surface of the crys ta l  (beam I) :  because of refract ion 
(normal NI) and change in ~, the  angle is now smaller 
t han  the internal  Bragg angle 0'. Hence the  crystal  has  
to be tu rned  from posit ion I I  to I b y  the  angle 0--0 '  to 

the  angle 0" follows from the observed Bragg angle 0, 
us ing Snell 's law: 

cos O" = cos 0//~. (3) 

E l imina t ing  ).' and  cos 0' from (1), and  using (2) and  (3), 
one obta ins :  

n~ ---- 2d(1--~i/sin ~ 0) sin 0 ,  (4) 

where ~ = 1--/~. According to Siegbatm, (4) is identical  
w i th  the equat ion derived by  Ewald  from his dynamica l  
theory.  The observed angle 0 is larger t h a n  0", for which 
the  Bragg equat ion is correct, and the d values calculated 
wi th  0 will be s l ight ly smaller t han  the actual  ones. 
The refract ion correction, to be added to the lat t ice 

Fig. 1. Reflection of X-rays from the surface (beam I) and from the inside (beam II) 
of a cubic crystal. 0 and 0' are the observed and actual angles of reflection. 
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Table 1. Lattice constants determined with Cu K and Cr K radiations, and the refraction correction, at 25.04-0.05 ° C. 

All values in kX. 
Not corrected Corrected for refraction 

Compound a Cr acu acr-- acu acr acu acr -- acu 
LLF 4.01799 4.01805 --0.00006 4.01807 4-01808 --0.00001 
NaF 4-62335 4.62341 --0.00006 4.62344 4.62345 --0.00001 
A t e  a 11.05184 11.05194 --0.00010 11.05214 11.05208 ~0"00006 

produce a strong reflection beam from the surface.* As 
shown in Fig. 1, the  total  increase in angle is then  
2(0--0'), which has to be subtracted from the observed 
20 in order to get the actual angle of reflection 0". 

Because the in tensi ty  of beam I I  coming from the 
inside of the  crystal is low owing to absorption, the  
intensest  par t  of a powder line will be produced by  those 
of the  reflected X-ray  beams which come from the surface 
of a ro ta t ing  single crystal  or from the surfaces of the  
crystal f ragments  (powder). This in tensi ty  will dominate  
the  more, the stronger the absorption of the  X-rays by 
the  grains. Therefore, if in measuring the  location of a 
powder or single-crystal line on a film the  point  of 
m a x i m u m  densi ty  of the  line on the  equator  of the pa t te rn  
is determined,  a refraction correction according to (5) or 
(6) has to be added to the  calculated latt ice parameter ,  
as a l ready pointed  out previously (Straumanis,  1940, 
1949, 1953). 

Al though bri t t le  cubic crystals f requent ly  disintegrate 
to small cubes during crushing (for instance the  surface 
of pulverized potassium chloride is composed to the  
ex ten t  of 80% of (100) faces (Young, 1954)) there still 
will be p lenty  of grains of irregular shape in a powder 
sample. Besides, the X-ray beam impinges upon the  
grains at  any  angle (Fig. 1 shows the  simplest position). 
This complicated si tuat ion was analysed by  Wilson 
(1940) wi th  the  result  tha t  a correction has also to be 
added  to the  extrapola ted (or calculated) latt ice constant.  
According to Klug & Alexander  (1954), the  correction 
der ived by Wilson is 

acorr. = aobs. (1-~-~) . (7) 

I t  can be easily seen tha t  (7) is also obta ined from (5) 
if the  anglo approaches ½~z. Thus, (7) contains both  kinds 
of correction, tha t  due to the  change in wavelength  
(equation (2)) and tha t  due to refraction (equation (3)), 
bu t  is strictly correct only for adding to lattice constants 
obta ined by  extrapolat ion to 90 °, or calculated from 
high back-reflection angles. In  the  lat ter  case, (7) natu-  
rally gives slightly smaller corrections than  (5) or (6), 
but  the  difference can be disregarded. However,  if con- 
s tants  are calculated from interferences under  0 angles 
less than  80 ° , (5) or (6) should be used ra ther  than  (7). 
Anyway,  the  article of Wilson gives further  evidence for 
the  applicabil i ty of the  equat ions (5) or (6) of Ewald  for 
correction of latt ice parameters  calculated from powder 
and  rota t ion crystal pat terns.  

As these refraction corrections are small, varying from 
approximate ly  0.00002 and less to 0.0002 ~ (see also 
Frohnmeyer  & Glocker, 1951, 1953), depending on the  
variables as given by (6), the  application of the  correction 

gives sense only in the  case of precision determinat ions .  
For  such determinat ions  both  tempera ture  control of the  
sample and  reproducibil i ty of measurements  wi thin  a 
range smaller t han  or equal  to the  value as given by the  
calculated refraction correction, is required. In  all o ther  
cases, or for purposes of comparison applying the  same 
wavelength  (Thewlis, 1955), the  refraction correction can 
be omit ted.  

There is also some exper imenta l  evidence for the  
necessity of applying the  refraction correction when  
calculating the  constants  from precision powder pat terns.  

All researchers who have used X-radiat ions of various 
wavelengths  for measurements  of latt ice constants  have 
felt t ha t  some correction is necessary to balance out  the  
results obtained.  As there were no other  plausible reasons 
for deviat ions in the  constants  when  using various wave- 
lengths, equat ion  (5) or (6) or a similar one was applied 
(Jet te  & Foote,  1935). The writer 's  previous measure-  
ments  made  wi th  temperature-control led  samples also 
showed a decrease of the  differences in lattice constants  
after the application of the  correction (Straumanis,  
Ievin~ & Karlsons, 1939, Table 1). 

Finally,  the  X-ray-dens i ty  atomic-weight  determina-  
tions support  the  applicat ion of the  same correction, for 
otherwise the  weights  would be too low when compared  
wi th  those de te rmined  chemically (Straumanis,  1949, 
1953). For  instance, for the  atomic weight  of carbon as 
diamond,  applying the  above correction, 12.0096 was 
obtained (Straumanis & A_ka, 1951). Disregarding the  
correction a value of only 12.0012 is obtained,  which is 
too low as compared with the chemical weight  12-011. 
The refraction correction was also applied by the Hut-  
chisons (1942, 1945) in de termining  the  a tomic weight  
of calcium and fluorine. Al though they  used da ta  obta ined 
wi th  different X-radiat ions,  and by various investigators,  
the  calculated weights for each element,  as computed  
from various combinations,  agreed very  well among 
themselves and wi th  the  chemical weights. The same was 
recently found in calculating the  atomic weight  of l i thium 
(Hutchison, 1954). All these excellent results would not  
have been a t ta ined  if the  refraction correction were dis- 
regarded.  

The precision la t t ice-parameter  measurements  of the  
writer  and his associates, except  the  measurements  of 
the years 1935, were all corrected for refraction using 
equat ion  (6). 

I wish to t hank  Prof. P. P. Ewald,  Polytechnic  Ins t i tu te  
of Brooklyn,  and  Dr B. E. Warren,  Massachusetts  In- 
s t i tute  of Technology, for helpful discussion. 

* As 0--0'  increases with decreasing 0, the reflections on 
Weissenberg photographs should appear more elongated at 
low angles than at high, a phenomenon which can frequently 
be observed. 
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Oblique projections. B y  P. J .  B u c K , *  Crystallographic Laboratory, Cavendieh Laboratory, Cambridge, England 
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The labour of invest igat ing a three-dimensional  s t ruc tura l  
pa t t e rn  is usual ly  reduced b y  the  use of two-dimensional  
projections. Two such projections m a y  be required to 
determine all the  parameters  of a structure,  bu t  in some 
systems (e.g. the  cubic) a single project ion will suffice. 
Calculations in three dimensions are sometimes necessary, . 
even when the result ing increase in accuracy is not  
essential, in order to resolve a toms t h a t  overlap in the 
projections. 

A uni t  cell is general ly chosen to have  a conventional  
relat ionship to the  s y m m e t r y  elements of a s tructure,  
and  projections are usual ly  made parallel  to the sides of 
the  cell. This is not  a necessary restriction, and  one can 
construct  a projection parallel  to a n y  direction which 
joins two latt ice points,  i.e. parallel  to a n y  direction wi th  
ra t ional  zone indices. The te rm 'oblique project ion '  will 
be used to denote a projection parallel  to a direction which 
is not  the edge of a convent ional  un i t  cell. 

I n  Fig. l(a) is shown a projection,  parallel  to the two- 
fold axis, of two pairs of a toms in a s t ructure  of space 
group P2.  A new cell m a y  be chosen as in Fig. l(b), and  
project ion parallel to the axis b" gives the pa t t e rn  of 
Fig. l(e). Whereas  Fig. l(a) has the plane group sym- 
m e t r y  P2,  Fig. l(c) belongs to P1.  Each  type  of a tom 
appears  twice in the projection,  and from the  four co- 
or.dinates of this  pair, all three independent  atomic co- 
o r ~ a t e s  can be obtained. I t  is clear t h a t  in Fig. l(b) 
o~her directions could have been chosen for the new 
direction of projection, for example,  the diagonal of the 
A face or the body  diagonal. 

Similar results  can be derived for the other  monoclinic 
space groups (see Black, 1955). The monoclinic cell is 
effectively replaced by  a triclinic cell, which will have a 
centre of s y m m e t r y  if the monoclinic space group has one. 
For  example,  in P2/m the  four symmetry- re la ted  a toms 
(in general positions) would project  parallel to an  oblique 
axis to give two independent  peaks, since the centre of 
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s y m m e t r y  is preserved in the  projection. For  a non- 
pr imit ive (monoclinic) latt ice,  the  new axis can be chosen 
to define ei ther  a pr imit ive or a centred triclinic cell. 

The discussion can easily be extended to space groups 
of higher symmet ry .  Four  a toms related by  s y m m e t r y  in 
an  orthorhombic space group m a y  give ei ther  two or four 
independent  positions in an oblique projection.  Conven- 
t ional  project ions which are normal  (e.g. in te t ragonal  or 
hexagonal)  or oblique (e.g. to the t r iad  in a cubic) to 
s y m m e t r y  axes give independent  peaks for symmet ry -  
related atoms. Oblique projections m a y  still be useful to  
resolve par t icular  a toms which superpose accidental ly  in 
axial  projections. 

The discussion leads to two main  conclusions which 
m a y  be of use in refining structures by  Fourier  methods.  
The first  is t h a t  in all space groups, except  P1 and  P i ,  
i t  is possible in principle to obtain all a tom parameters  
from a single two-dimensional  projection. The three- 
dimensional parameters  will be obtained from l inear 
combinat ion of pairs of parameters  measured in the  
project ion (Fig. 1), so t h a t  the  s tandard  errors in them 
will be of the order of W 2 t imes the normal  s tandard  
error. In  some cases, more t han  one value of each para- 
meter  is obtained because there m a y  be more t han  two 
related atoms in the asymmetr ic  un i t ;  then  the s tandard  
error will be reduced. Where  i t  can be applied, the  method  
should be more accurate and less laborious t h a n  the use 
of higher-layer syntheses (Cochran & Dyer ,  1952). 

The second conclusion is tha t ,  in a complex structure,  
several possible projections can be considered for refine- 
ment ,  and it  m a y  be possible to resolve all a tomic peaks  
clearly by  using a few selected projections and so avoid 
the necessi ty for three-dimensional refinement.  Each  
project ion requires da ta  for only one zone which can be 
collected on zero-layer oscillation or Weissenberg photo- 
graphs, so avoiding the uncer ta int ies  in t roduced by  
distort ion of spot shapes and inter- layer  correlation fac- 
tors. Even  in three-dimensional  work, one migh t  (for 
example) choose an oblique direction for a bounded pro- 


